Остекление

 Своими руками

 Алюминиевый

 Балкон

 Батареи

 Веранда

  • Остекление
  • Своими руками
  • Алюминиевым
  • Балкон
  • Батареи
  • Веранда
  • Виниловые обои
  • Как выбрать
  • Видео
  • Новости
  •  Виниловые обои

     Как выбрать

    Алюминиевые витражи вес
    Фасад любого здания – это его лицо. Вот почему так важно, чтобы он выглядел презентабельно. А для этого надо приложить немало усилий. Внешнему облику здания, его конструкции, люди всегда уделяли много

    Печка мангал своими руками
    Стационарный мангал из кирпича на улице – мечта каждого дачника. Выстроить самую надежную и крепкую конструкцию своими руками не составит особенных усилий, а веселить он будет ни один год. Пошаговая аннотация

    Как подключить светильник видео
    Интернет магазин mebliko предлагает вам широкий ассортимент мебели под заказ, в частности шкафов купе. В каждом доме шкаф купе - это основной элемент мебели, предмет всеобщего внимания . Все ваши пожелания

    Заказать балкон с выносом
    Увеличение площади балконной плиты, это и есть расширение по плите. Увеличение производится — путем наваривания металлического каркаса на уровне плиты, но отстоящего от нее на некотором расстоянии.

    Двери своими руками видео
    Всегда мечтала о том, чтобы принимать душ стоя, но наличие колонки над ванной мне мешало. Поэтому когда мы стали делать ремонт, я сразу настояла на покупке душевой кабины. Тем более, что я уже заранее

    Светодиодные полосы на алюминиевой основе
    10-ки лет везде в публичных местах с потолков нам светят растровые осветительные приборы, часто подмигивая люминесцентными лампами и гудя дросселями. Сейчас светодиодная подмена лампам дневного света

    Доставка цветов
    В наше время технологии достаточно развиты, чтобы каждый человек мог полноценно пользоваться интернетом. Также стоит отметить, что в современном мире не хватает времени, чтобы все успеть. Все это создает

    Химический насос
    Много секционный насос перемещает жидкость последовательно из одной ступени в другую, и только после этого вода или суспензия поступает в отводящий патрубок. Вал, отвечающий за вращение рабочих элементов,

    Профессиональные услуги по СЕО-оптимизации
    Сегодня, так или иначе, каждый из нас вынужден каждый день ходить в магазин и покупать необходимые для проживания вещи. Будь то продукты, одежда или прочие товары. Однако с бешеным ростом темпа жизни,

    Moneyveo взять деньги в долг
    Вот Вам всем вопрос на засыпку: давать ли деньги в долг. Любой из Вас в своей жизни был и кредитором и заемщиком, и небольшой опыт в данном вопросе уже есть. Однако не у всех он положительный. Вопрос

    г.Харьков, Sun City  Premium 057 755 46 88, 057 755 54 80

        050 302 16 22, 093 014 32 72

    Водные свойства и водный режим почв

    Опубликовано: 12.10.2018

    Вода в почве — один из важнейших факторов плодородия и урожайности растений. В почвенных процессах, в создании агрономически важных свойств почвы она играет значительную и разностороннюю роль. Эта роль определяется особым положением воды в природе.

    Вода - это особая физико-химическая весьма активная система, обеспечивающая перемещение веществ в пространстве. С содержанием воды в почве связаны скорость выветривания и почвообразования, гумусообразование, биологические, химические и физико-химические процессы. В воде растворяются питательные вещества, которые из почвенного раствора поступают в растения. Поскольку при испарении воды затрачивается огромное количество тепла, вода является и терморегулятором почвы и растений, предохраняя их от перегрева солнечной радиацией.

     

    Вода поступает в почву в виде атмосферных осадков, грунтовых вод, при конденсации водяных паров из атмосферы, при орошении. Главным источником воды в почве в условиях неорошаемого земледелия являются атмосферные осадки.

    Содержание влаги в процентах к массе абсолютно сухой почвы (высушенной при 105 °С) характеризует влажность почвы. Ее можно также выразить в процентах объема почвы (в м3/га, мм или т/га).

    В составе растений содержится 80—90 % воды. В процессе своей жизнедеятельности они тратят огромное ее количество. Для создания 1 г сухого вещества требуется от 200 до 1000 г воды. При недостатке воды в почве формируются неустойчивые и низкие урожаи сельскохозяйственных культур.

    Водообеспеченность растений зависит не только от количества поступающей воды в почву, но и от ее водных свойств. При равной абсолютной влажности почвы могут содержать разное количество доступной воды, что обусловлено гранулометрическим составом почв, структурным состоянием, содержанием гумуса и другими показателями, определяющими их водные свойства.

    Познание закономерностей поведения почвенной влаги, процессов водопотребления растениями, водных свойств и водного режима имеет большое значение для управления и оптимизации водного режима с целью получения высоких и устойчивых урожаев сельскохозяйственных культур.

    В изучение закономерностей взаимосвязей между водой, почвой и растением большой вклад внесли А. А. Измаильский, Г. Н. Высоцкий, П. С. Коссович. Основы учения о водных свойствах почв и водных режимах изложены в трудах А. Ф. Лебедева, С. И. Долгова, А. Н. Роде, Н. А. Качинского и других ученых.

    КАТЕГОРИИ (ФОРМЫ) ПОЧВЕННОЙ ВОДЫ, ИХ ХАРАКТЕРИСТИКА И ДОСТУПНОСТЬ РАСТЕНИЯМ

    Вода в почвах неоднородна. Разные ее количества имеют неодинаковые физические свойства (термодинамический потенциал, теплоемкость, плотность, вязкость, химический состав, осмотическое давление и т. д.), обусловленные взаимодействием молекул воды между собой и с другими фазами почвы (твердой, жидкой, газообразной). Количества почвенной воды, обладающие одинаковыми свойствами, получили название категорий или форм почвенной воды.

    Согласно классификации, разработанной А. А. Роде (1965), в почвах различают пять категорий (форм) почвенной воды: твердую, химически связанную, парообразную, сорбированную и свободную.

    Твердая вода — лед. Эта категория воды является потенциальным источником жидкой и парообразной воды. Появление воды в форме льда может иметь сезонный (сезонное промерзание почвы) или многолетний («вечная» мерзлота) характер. Лед переходит в жидкое и парообразное состояние при температуре воды выше 0°С.

    Химически связанная вода входит в состав химических соединений (минералов) в виде гидроксильной группы — так называемая конституционная вода [Fe(OH)3, А1(ОН)3] или целыми молекулами — кристаллизационная вода (CaSO • 2Н2О, Na2SO4 • 10Н2О).

    Конституционную воду удаляют из почвы прокаливанием при температуре 400—800 ˚С, кристаллизационную — при нагревании почвы до 100—200 °С. Химически связанная вода —важный показатель состава почвы; она входит в состав твердой фазы почвы и не является самостоятельным физическим телом, не передвигается, не обладает свойствами растворителя и недоступна растениям.

    Парообразная вода содержится в почвенном воздухе, в порах, свободных от воды, в форме водяного пара. Парообразная влага может передвигаться вместе с током почвенного воздуха, а также диффузно из мест с большей упругостью водяного пара в места с меньшей упругостью.

    Несмотря на то что общее количество парообразной воды не превышает 0,001 % массы почвы, она играет большую роль в перераспределении почвенной влаги и предохраняет корневые волоски растений от пересыхания.

    Конденсируясь, пар переходит в жидкую воду. В почве парообразная влага передвигается от теплых слоев к более холодным. В связи с этим возникают восходящие и нисходящие сезонные и суточные потоки водяного пара. За счет восходящего передвижения водяного пара в зимнее время в метровом слое почвы засушливых районов аккумулируется до 10—14 мм влаги.

    Физически связанная, или сорбированная, вода образуется путем сорбции парообразной и жидкой воды на поверхности твердых частиц почвы. Физически связанную воду в зависимости от прочности связи с твердой фазой почвы подразделяют на прочносвязанную и рыхлосвязанную (пленочную).

    Прочносвязанная (гигроскопическая) вода образуется в результате адсорбции молекул воды из парообразного состояния на поверхности твердых частиц почвы. Свойство почвы сорбировать парообразную воду называют гигроскопичностью почв, а сорбированную воду — гигроскопической. Прочносвязанная гигроскопическая вода удерживается на поверхности почвенных частиц очень высоким давлением, образуя вокруг почвенных частиц тончайшие пленки.

    По физическим свойствам гигроскопическая вода приближается к твердым телам. Она обладает высокой плотностью (1,5-1,8 г/см3), низкой электропроводностью, не растворяет вещества, отличается повышенной вязкостью, замерзает при температуре от -4 до -78 °С, недоступна растениям.

    Предельное количество воды, которое может быть поглощено почвой из парообразного состояния при относительной влажности воздуха, близкой к 100 %, называют максимальной гигроскопической (МГ) водой. При влажности почвы, равной МГ, толщина пленки из молекул воды достигает 3-4 слоев.

    Величины гигроскопичности и МГ зависят от гранулометрического и минералогического составов, содержания гумуса. Чем больше в почве илистой, особенно коллоидной, фракции и гумуса, тем выше гигроскопичность и МГ.

    В минеральных слабогумусированных песчаных и супесчаных почвах максимальная гигроскопичность колеблется от 0,5 до 1 %. В сильногумусированных суглинистых и глинистых почвах максимальная гигроскопичность может составлять 15—16%, а в торфах – до 30-50 %.

    Однако за счет поглощения парообразной воды сорбционные силы поверхности почвенных частиц не исчерпываются, даже если влажность почвы достигает максимальной гигроскопичности. При соприкосновении частиц почвы с водой происходит дополнительное ее поглощение и образуется рыхлосвязанная, или пленочная, вода. Она удерживается почвенными частицами менее прочно, очень медленно передвигается от почвенных частиц с большей пленкой к частицам с меньшей пленкой. Толщина пленки достигает нескольких десятков молекул воды и может превышать величину максимальной гигроскопичности в 2—4 раза. Пленочная влага имеет плотность несколько выше плотности свободной воды, обладает пониженной растворяющей способностью, замерзает при температуре -1,5...-4 °С, частично доступна для растений.

    Свободная вода — это вода, содержащаяся в почве сверх рыхлосвязанной. Она не связана силами притяжения с почвенными частицами. Различают две формы свободной воды в почве: капиллярную и гравитационную.

    Капиллярная вода находится в тонких капиллярных порах почвы и передвигается в них под влиянием капиллярных сил, возникающих на поверхности раздела твердой, жидкой и газообразной фаз. Эта вода наиболее доступна растениям.

    В зависимости от характера увлажнения различают капиллярно-подвешенную и капиллярно-подпертую воду. При увлажнении почвы сверху атмосферными осадками или оросительными водами формируется капиллярно-подвешенная вода. При увлажнении почвы снизу за счет грунтовых вод в почве образуется капиллярно-подпертая вода. Зону капиллярного насыщения над грунтовой водой называют капиллярной каймой (КК).

    Гравитационная вода размещается в крупных некапиллярных порах, свободно просачивается вниз по профилю под действием силы тяжести. Различают гравитационную воду просачивающуюся и влагу водоносных горизонтов. Последняя над водоупорным слоем образует почвенные и грунтовые воды, а также временный горизонт верховых вод.

    ВОДНЫЕ СВОЙСТВА ПОЧВ

    Основными водными свойствами почв являются водоудерживающая способность, водопроницаемость и водоподъемная способность.

    Водоудерживающая способность — свойство почвы удерживать воду, обусловленное действием сорбционных и капиллярных сил. Наибольшее количество воды, которое способна удерживать почва теми или иными силами, называется влагоемкостью.

    В зависимости от того, в какой форме находится удерживаемая почвой влага, различают полную, наименьшую, капиллярную и максимально-молекулярную влагоемкость.

    Полная (максимальная) влагоемкость (ПВ), или водовместимость, — это количество влаги, удерживаемое почвой в состоянии полного насыщения, когда все поры (капиллярные и некапиллярные) заполнены водой.

    Для почв нормального увлажнения состояние влажности, соответствующее полной влагоемкости, может быть после снеготаяния, обильных дождей или при поливе большими нормами воды. Для избыточно влажных (гидроморфных) почв состояние полной влагоемкости может быть длительным или постоянным.

    При длительном состоянии насыщения почв водой до полной влагоемкости в них развиваются анаэробные процессы, снижающие ее плодородие и продуктивность растений. Оптимальной для растений считается относительная влажность почв в пределах 50-60 % ПВ.

    Однако в результате набухания почвы при ее увлажнении, наличия защемленного воздуха полная влагоемкость не всегда точно соответствует общей пористости почвы.

    Наименьшая влагоемкость (НВ) — это максимальное количество капиллярно-подвешенной влаги, которое способна длительное время удерживать почва после обильного ее увлажнения и свободного стекания воды при условии исключения испарения и капиллярного увлажнения за счет грунтовой воды.

    При НВ в почве 55-75 % пор заполнено водой, создаются оптимальные условия влаго- и воздухообеспеченности растений. Величина НВ зависит от гранулометрического состава, содержания гумуса и сложения почвы. Чем тяжелее почва по гранулометрическому составу, чем больше в ней гумуса, тем выше ее наименьшая влагоемкость. Очень рыхлая и сильноплотная почвы имеют меньшую влагоемкость (НВ), чем почвы средней плотности. Для суглинистых и глинистых почв величина НВ колеблется от 20 до 45 % абсолютной влажности почв. Наибольшие значения НВ характерны для гумусированных почв тяжелого гранулометрического состава с хорошо выраженной макро- и микроструктурой.

    По мере испарения и потребления воды растения теряют сплошное заполнение водой капилляров, уменьшаются подвижность воды и доступность ее растениям. Влажность, соответствующая разрыву капилляров, называется влажностью разрыва капилляров (ВРК). Это гидрологическая константа почвы, характеризующая нижний предел оптимальной влажности. Для суглинистых и глинистых почв ВРК составляет 65—70 % НВ.

    Максимальное количество капиллярно-подпертой влаги, которое может содержаться в почве над уровнем грунтовых вод, называется капиллярной влагоемкостью (KB).

    Максимальная молекулярная влагоемкость (ММВ) соответствует наибольшему содержанию рыхлосвязанной воды, удерживаемой сорбционными силами или силами молекулярного притяжения.

    При влажности, близкой к ММВ, растения обычно начинают устойчиво завядать, поэтому такую влажность называют влажностью завядания (ВЗ) или «мертвым», недоступным для растений запасом влаги в почве. Для разных растений, а также разных периодов их роста (проростки или зрелые растения) влажность завядания будет неодинакова. Особенно чувствительны к критическому состоянию влажности почвы проростки.

    Влажность завядания растений определяют методом проростков по С. И. Долгову или расчетным способом, используя процентное содержание воды в почве, равное максимальной гигроскопической влаге. При этом учитывают, что отношение влажности завядания к максимальной гигроскопической влаге в разных почвах для разных растений колеблется от 1 до 3, для незасоленных почв оно чаще составляет 1,3—1,5, для засоленных — несколько выше. Влажность завядания (в %) равна максимальной гигроскопической влажности (в%), умноженной на коэффициент 1,34 (по рекомендации гидрометеослужбы) или 1,5 (по рекомендации Н. А. Качинского):

    В3= МГ × 1,34 (1,5).

    Влажность завядания различается в зависимости от типа почв и гранулометрического состава (табл. 33).

    33. Влажность завядания в почвах разного гранулометрического состава

    (по данным Францессона)

     

    Гранулометрический состав почв

    ВЗ, % на абсолютно сухую почву

    Дерново-подзолистые почвы

    Черноземы

    Песчаный

    1—3

    Супесчаный и легкосуглинистый

    3—6

    4—8

    Средне-и тяжелосуглинистый

    6—12

    9—15

    Глинистый

    16—22

     

    В торфяных почвах влажность завядания достигает 50 % массы абсолютно сухой почвы.

    Влажность завядания представляет важнейшую гидрологическую константу. На основании данных ВЗ и общего содержания влаги в почве вычисляют запас продуктивной влаги, т. е. той влаги, которая доступна для растений и расходуется на формирование урожая.

    Количество продуктивной влаги принято выражать в мм толщины водяного слоя. В таком виде запасы воды лучше сопоставлять с данными по осадкам. 1 мм воды на площади 1 га соответствует 10 т воды.

    Запасы продуктивной влаги (в мм/га):

    W=0,l×dv×h(B-B3),

    где 0,1 — коэффициент перевода запасов влаги из м3/га в мм водяного слоя; dv — плотность почвы, г/см3; h — мощность слоя почвы, см, длят которого рассчитывается запас продуктивной влаги; В — полевая влажность почвы, % на абсолютно сухую почву; ВЗ— влажность завядания, % на абсолютно сухую почву.

    Оптимальные запасы продуктивной влаги (по А. М. Шульгину) в метровом слое почвы в период вегетации растений находятся в среднем в пределах от 100 до 200 мм.

    Как избыточная влажность (более 250 мм), так и недостаточная (менее 50 мм) отрицательно сказываются на развитии растений и их урожайности.

    Водопроницаемость почв — способность почв впитывать и пропускать через себя воду. Различают две стадии водопроницаемости: впитывание и фильтрацию. Впитывание — это поглощение воды почвой и ее прохождение в не насыщенной водой почве. Фильтрация (просачивание) — передвижение воды в почве под влиянием силы тяжести и градиента напора при полном насыщении почвы водой. Эти стадии водопроницаемости характеризуются соответственно коэффициентами впитывания и фильтрации.

    Водопроницаемость измеряется объемом воды (мм), протекающей через единицу площади почвы (см2) в единицу времени (ч) при напоре воды 5 см.

    Величина эта очень динамична, зависит от гранулометрического состава и химических свойств почв, их структурного состояния, плотности, порозности, влажности.

    В почвах тяжелого гранулометрического состава водопроницаемость ниже, чем в легких; присутствие в ППК поглощенного натрия или магния, способствующих быстрому набуханию почв, делает почвы практически водонепроницаемыми.

    Оценку водопроницаемости почв проводят по шкале, предложенной Н. А. Качинским (1970).

    Водопроницаемость (при напоре воды 5 см и температуре 10 °С, мм/ч)

    Оценка

    Свыше 1000

    Провальная

    1000 — 500

    Излишне высокая

    500—100

    Наилучшая

    100—70

    Хорошая

    70—30

    Удовлетворительная

    <30

    Неудовлетворительная

     

    При недостаточной водопроницаемости влага или застаивается на поверхности почвы, создавая условия для вымочек посевов, или стекает по уклону местности, способствуя проявлению водной эрозии.

    При очень высокой водопроницаемости влага не накапливается в корнеобитаемом слое, быстро фильтруется в глубь почвенного профиля, в условиях орошаемого земледелия происходят потери поливной воды, подъем уровня грунтовых вод и возникает опасность вторичного засоления почв.

    Водоподъемная способность — свойство почвы вызывать восходящее передвижение содержащейся в ней воды за счет капиллярных сил.

    Высота подъема воды в почвах и скорость ее передвижения определяются в основном гранулометрическим и структурным составами почв, их порозностью.

    Чем почвы тяжелее и менее структурны, тем больше потенциальная высота подъема воды, а скорость подъема ее меньше.

    Гранулометрический состав

    Водоподъемная способность, м

    Гранулометрический состав

    Водоподъемная способность, м

    Песок крупный

    0,5

    Суглинок средний

    2,5—3,0

    »     средний

    0,5-0,8

    »         тяжелый

    3,0—3,5

    Супесь

    1,0-1,5

    Глина

    3,5—5,0

    Пылеватая супесь

    1,5-2,0

    Лёссы

    4,0—5,0

     

    На скорость подъема воды влияет также степень минерализации грунтовых вод. Высокоминерализованные воды характеризуются меньшими высотой и скоростью подъема. Однако близкое к поверхности залегание минерализованных грунтовых вод (1 — 1,5 м) создает опасность быстрого засоления почв.

    ВОДНЫЙ РЕЖИМ ПОЧВ

    Под водным режимом понимают совокупность явлений поступления влаги в почву, ее удержание, расход и передвижение в почве. Количественно его выражают через водный баланс, характеризующий приход влаги в почву и расход из нее.

    Общее уравнение водного баланса выражают следующим образом:

    В0 + Вос + Вг + Вк + Впр + Вб = Еисп + Ет + Ви + Вп + Вс + В1

    где Во — начальный запас влаги; Вос — сумма осадков за период наблюдения; Вг — количество влаги, поступающей из грунтовых вод; Вк — количество влаги, конденсирующейся из паров воды; Впр — количество влаги, поступающей в результате поверхностного притока; Вб — количество влаги, поступающей от бокового притока почвенных и грунтовых вод; Еисп — количество влаги, испарившейся с поверхности почвы (физическое испарение); Ет — количество влаги, расходуемое натранспирацию (десукция); Ви — влага, инфильтрующаяся впочвенно-грунтовуютолщу; Вп — количество воды, теряющейся за счет поверхностного стока; Вс — влага, теряющаяся при боковом внутрипочвенном стоке; В 1 — запас влаги в почве в конце периода наблюдения. Если за длительный период времени прогрессирующего увлажнения или иссушения территории не происходит, приход и расход воды в почве равны, уравнение водного баланса равно нулю. Запасы воды в почве в этом случае в начале и в конце периода наблюдений могут быть равны: В0 = В1 Для склоновых элементов рельефа количество воды, поступающей от бокового притока почвенных и грунтовых вод, равно количеству воды, теряющейся при боковом стоке: Вб = Вс. Содержание конденсирующейся в почве влаги по сравнению с другими статьями баланса мало, и им можно пренебречь. С учетом этих уточнений уравнение водного баланса приобретает следующий вид:

    Вос + Вг + Впр = Еисп + Ет + Ви + Вп.

    Еще более простой вид имеет уравнение водного баланса равноценных территорий с глубоким залеганием грунтовых вод:

    В0+ Вос = Е + В1

    где Е — суммарное испарение, или эвапотранспирация.

    В зависимости от характера годового водного баланса по соотношению его составляющих — годовым осадкам и годовому испарению — формируются основные типы водного режима.

    Отношение годовой суммы осадков к годовой испаряемости называют коэффициентом увлажнения (КУ). В разных природных зонах КУ колеблется от 3 до 0,1.

    Для различных природных условий Г. Н. Высоцкий установил 4 типа водного режима: промывной, периодически промывной, непромывной и выпотной. Развивая учение Г. Н. Высоцкого, профессор А. А. Роде выделил 6 типов водного режима, разделив их на несколько подтипов.

    1. Мерзлотный тип. Распространен в условиях многолетней мерзлоты. Мерзлый слой грунта водонепроницаем, является водоупором, над которым проходит надмерзлотная верховодка, которая обусловливает насыщенность водой верхней части оттаявшейпочвы в течение вегетационного периода.

    2. Промывной тип (КУ > 1). Характерен для местностей, где сумма годовых осадков больше испаряемости. Весь профиль почвы ежегодно подвергается сквозному промачиванию до грунтовых вод и интенсивному выщелачиванию продуктов почвообразования. Под влиянием промывного типа водного режима формируются почвы подзолистого типа, красноземы и желтоземы. При близком к поверхности залегании грунтовых вод, слабой водопроницаемости почв и почвообразующих пород формируется болотный подтип водного режима. Под его влиянием формируются болотные и подзолисто-болотные почвы.

    3. Периодически промывной тип (КУ = 1, при колебаниях от 1,2 до 0,8). Этот тип водного режима отличается средней многолетней сбалансированностью осадков и испаряемости. Для него характерны чередование ограниченного промачивания почв и пород в сухие годы (непромывные условия) и сквозное промачивание (промывной режим) во влажные. Промывание почв избытком осадков происходит 1-2 раза в несколько лет. Такой тип водного режима присущ серым лесным почвам, черноземам оподзоленным и выщелоченным. Водообеспеченность почв неустойчивая.

    4. Непромывной тип (КУ < 1). Характеризуется распределением влаги осадков преимущественно в верхних горизонтах и не достигает грунтовых вод. Связь между атмосферной и грунтовой водой осуществляется через слой с очень низкой влажностью, близкой к ВЗ. Обмен влагой происходит путем передвижения воды в форме пара. Такой тип водного режима характерен для степных почв — черноземов, каштановых, бурых полупустынных и серо-бурых пустынных почв. В указанном ряду почв уменьшается количество осадков, увеличивается испаряемость. Коэффициент увлажнения снижается с 0,6 до 0,1.

    Влагооборот захватывает толщу почв и грунта от 4 м (степные черноземы) до 1 м (пустынно-степные, пустынные почвы).

    Запасы влаги, накопленные в почвах степей весной, интенсивно расходуются на транспирацию и физическое испарение и к осени становятся ничтожно малыми. В полупустынной и пустынной зонах без орошения земледелие невозможно.

    5. Выпотной тип (КУ < 1). Проявляется в степной, полупустынной и пустынной зонах при близком залегании грунтовых вод. Преобладают восходящие потоки влаги по капиллярам от грунтовых вод. При высокой минерализации грунтовых вод в почву поступают легкорастворимые соли, происходит ее засоление.

    6. Ирригационный тип. Он создается при дополнительном увлажнении почвы оросительными водами. При правильном нормировании поливной воды и соблюдении оросительного режима водный режим почвы должен формироваться по непромывному типу с КУ, близким к единице.

    РЕГУЛИРОВАНИЕ ВОДНОГО РЕЖИМА

    Каждой почвенно-климатической зоне присущи те или иные типы водного режима почв, которые в зависимости от особенностей возделываемых культур требуют соответствующих мероприятий по его регулированию.

    В таежно-лесной почвенно-климатической зоне и в других зонах, где наблюдается избыточное увлажнение почв, используют различные агротехнические приемы, направленные на отвод избыточной влаги из верхних горизонтов почвы: грядкование и гребневание, нивелировку микро- и мезопонижений. При необходимости проводят осушение открытыми канавами, закрытым дренажем, обвалованием, кольматажем и другие мелиоративные приемы.

    Избыточное увлажнение можно устранить созданием мощного, хорошо окультуренного пахотного слоя и рыхлением подпахотного горизонта, что обеспечивает повышение влагоемкости почвы и просачивание влаги в нижние слои. Эта влага в засушливые критические периоды вегетации служит дополнительным резервом для выращиваемых растений.

    В таежно-лесной зоне иногда бывают засушливые годы, когда сельскохозяйственные культуры из-за недостатка продуктивной влаги резко снижают урожаи. Например, в Московской области из 100 лет 29 бывают засушливыми, 23 — избыточно влажными, 48 — нормальными. Поэтому даже в этой зоне в отдельные годы целесообразно накопление и сбережение влаги атмосферных осадков.

    В зонах лесостепи и степи с неустойчивым и недостаточным увлажнением почв основные задачи по регулированию водного режима сводятся к накоплению, сохранению и продуктивному использованию влаги выпадающих осадков для поддержания необходимой обеспеченности возделываемых культур. В этих зонах большое значение приобретают мероприятия, направленные на ослабление поверхностного стока воды, снегозадержание, уменьшение физического испарения воды из почвы.

    Важная роль принадлежит системе обработки почвы, чистым парам, борьбе с сорняками, лесополосам. Так, зяблевая обработка почвы, обеспечивая рыхлое строение пахотного слоя, способствует лучшему поглощению дождевых и талых вод, уменьшает поверхностный сток и снижает потери влаги на физическое испарение. Это улучшает влагообеспеченность сельскохозяйственных культур и повышает их урожай.

    В засушливых районах Заволжья, Западной Сибири эффективны кулисные пары, способствующие увеличению запасов продуктивной влаги в метровом слое до 50 мм и более (Шульгин). Непроизводительные потери влаги на физическое испарение существенно уменьшаются при проведении весеннего боронования полей, а также при рыхлении поверхностных горизонтов почвы после дождей, предупреждающих образование корки. Послепосевное прикатывание почвы изменяет плотность поверхностного слоя пахотного горизонта по сравнению с остальной его массой. Разность плотностей почвы обусловливает капиллярный подток влаги из нижележащего слоя и помогает возникновению конденсации водяных паров воздуха. Применение минеральных и органических удобрений способствует более экономичному использованию влаги; водопотребление в расчете на 100 кг зерна снижается в среднем на 26 % (Листопадов, Шапошникова).

    В овощеводстве для сохранения влаги широко применяют мульчирование почвы различными материалами.

    В пустынно-степной и пустынных зонах основной способ регулирования водного режима — орошение. При орошении особенно важно стремиться к уменьшению непродуктивных потерь воды для предотвращения вторичного засоления. Оптимизация водно-физических свойств почв, их структурного состояния способствует улучшению влагообеспеченности растений в различных почвенно-климатических зонах.

    Контрольные вопросы и задания

    1. Назовите категории (формы) воды в почве. Какова их прочность связи с твердой фазой почвы и доступность растениям? 2. Дайте понятие почвенно-гидрологи-ческих констант, перечислите основные из них. 3. Что называется продуктивной влагой? Как ее вычислить? 4. Назовите и охарактеризуйте водные свойства почвы. Какие свойства почв определяют водные свойства? 5. Дайте понятие водного режима. 6. Охарактеризуйте типы водного режима и приемы их регулирования.

     Вернуться на главную

    rss